If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2t^2+24t=0
a = -2; b = 24; c = 0;
Δ = b2-4ac
Δ = 242-4·(-2)·0
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-24}{2*-2}=\frac{-48}{-4} =+12 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+24}{2*-2}=\frac{0}{-4} =0 $
| (2x-15)+(x-5)+(8x-9)=180 | | -3(7p+5)=21 | | 96=8x•8 | | 15=(x+2)(x) | | 1.5x0.34=0.51 | | 7x-12.5=76 | | (5x+5)+(x+16)+(2x+7)=180 | | -24+17=(8x-13) | | -1=(1/3)x | | (x*x)+5x−24=0 | | x2+5x−24=0 | | (2x+14)+(3x+15)+(7x+9)=180 | | 36=-2y+4(y+6) | | -10=-6v+4(v-2) | | 440x+220=468x-78 | | 7v-24=4v | | 3(x+2)^2-75=0 | | 2(x+4)-6x=-12 | | ∠1=3x+18∠7=2x+39 | | (-2)=-4x-3 | | 121=4(-3x-22) | | 7x+7=4x+10 | | -3=6(5c) | | (2x+14)+(9x-8)+(2x+8)=180 | | -7x+6=6x | | v+8v=18 | | 28=9x-2x | | 90+7x+8+13x+12=180 | | 22x+24+31x=-1 | | 4(5x-4)=4x+x=2 | | 6(2x-2)+4=-116 | | 3x^2-2x-1680=0 |